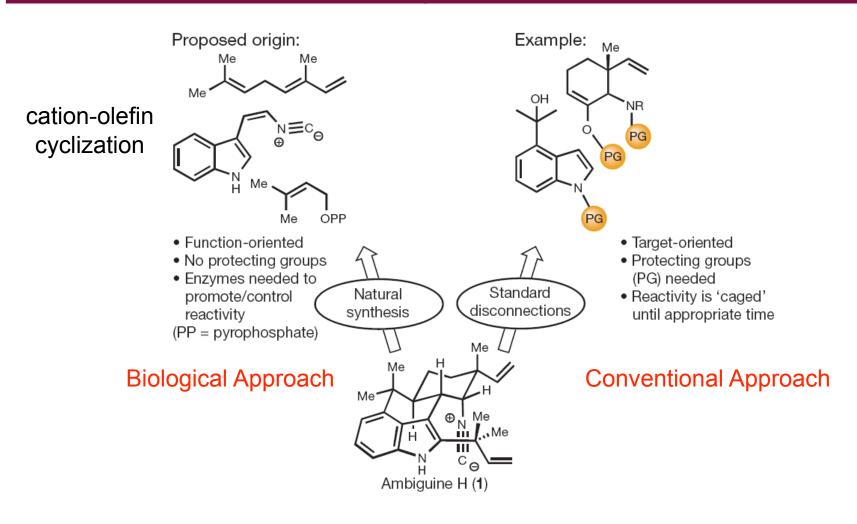
Few Selected Total Synthesis in 2007

Group Meeting June 1, 2007

Anil Kumar Gupta

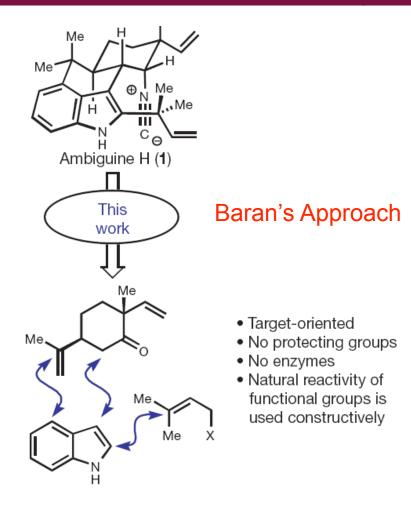
Total Synthesis without Protecting Groups

Chemoselectivity !!


Solution: Protecting group

BUT.....It adds....

- Cost
- Complexity of synthesis
- At least 2 steps each to a synthetic sequence
- Also, sometimes lowers efficiency and yield
- Difficulty in their removal
- Unintented Side reactions (sometimes)


Sierra, M. A. & de la Torre, M. C. Dead Ends and Detours, Direct Ways to Successful Total Synthesis (Wiley-VCH, Weinheim, 2004)

Hapalindole, Fischerindole, Welwitindolinone, and Ambiguine alkaloids

Baran, P. S. & Richter, J. M. *Nature*, **2007**,446, 404

Hapalindole, Fischerindole, Welwitindolinone, and Ambiguine alkaloids

Biological Activity:

- Antifungal, Antibacterial,
- Antimycotic and Anticancer
- Further testing prevented by the paucity of this material (~5 mg).

Hapalindole, Fischerindole, Welwitindolinone, and Ambiguine alkaloids

Baran, P. S. & Richter, J. M. *Nature*, **2007**,446, 404

Ŋ

Hapalindole U and Ambiguine H

Me

I. i. CICOCCI₃, Zn
Et₂O, sonication

ii. NaOMe, MeOH,
$$\Delta$$

Me

OH

OH

A

B

B

C

Tolerand

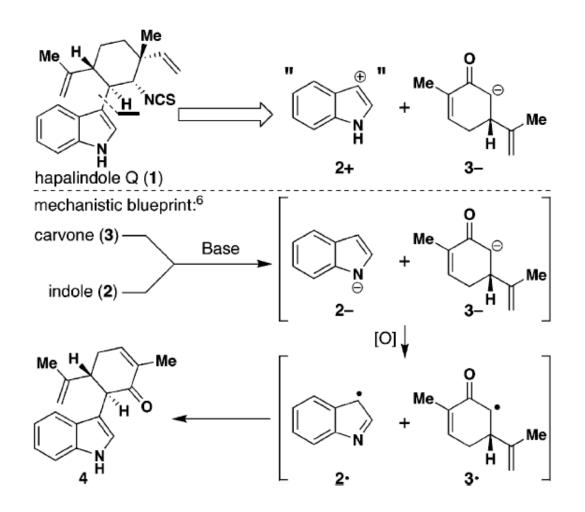
Me

OH

OH

OH

OH


OH

A

Figure S1: Synthesis of enantiopure ketone 7.

¥

Direct Coupling of Indoles with Carbonyls Compounds

Oxidative dimerization of enolates???

Large excess of one of the partners avoids homocoupling

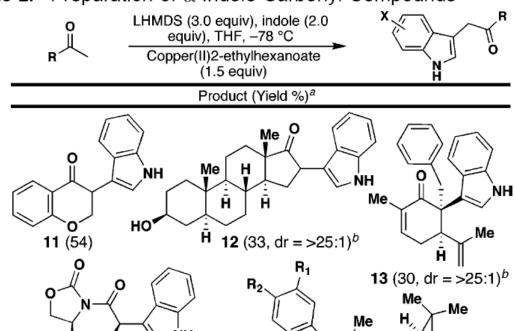
Baran, P. S. & Richter, J. M. J. Am. Chem. Soc. 2004,126, 7450-7451

W

Optimization

Table 1. Selected Optimization Results of $2 + 3 \rightarrow 4$

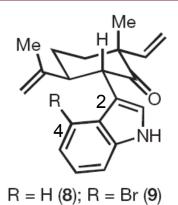
Entry	Conditions	Yield (%) ^a
1	2 (1.0 eq), 3 (3.0 eq), LDA (4.0 eq), Fe (4.0 eq), -78 to 23 °C	ca 15
2	2 (1.0 eq), 3 (3.0 eq), LDA (4.0 eq), Cu (4.0 eq), -78 to 23 °C	24
3	2 (1.0 eq), 3 (1.0 eq), LDA (2.0 eq), Cu (2.0 eq), -78 to 0 °C	24
4	2 (3.0 eq), 3 (1.0 eq), LDA (4.0 eq), Cu (4.0 eq), -78 to 0 °C	32
5	2 (2.0 eq), 3 (1.0 eq), LHMDS (3.0 eq), Cu (1.5 eq), –78 °C	53 (70) ^b


Optimum Protocol

Baran, P. S. & Richter, J. M. J. Am. Chem. Soc. 2004,126, 7450-7451

^a Isolated yield after chromatography. ^b Yield based on recovered sm.

Scope


Table 2. Preparation of α -Indole Carbonyl Compounds

- Free Alcohols
- Hindered Indoles
- Amides
- Functionalized Indoles

Ŋ

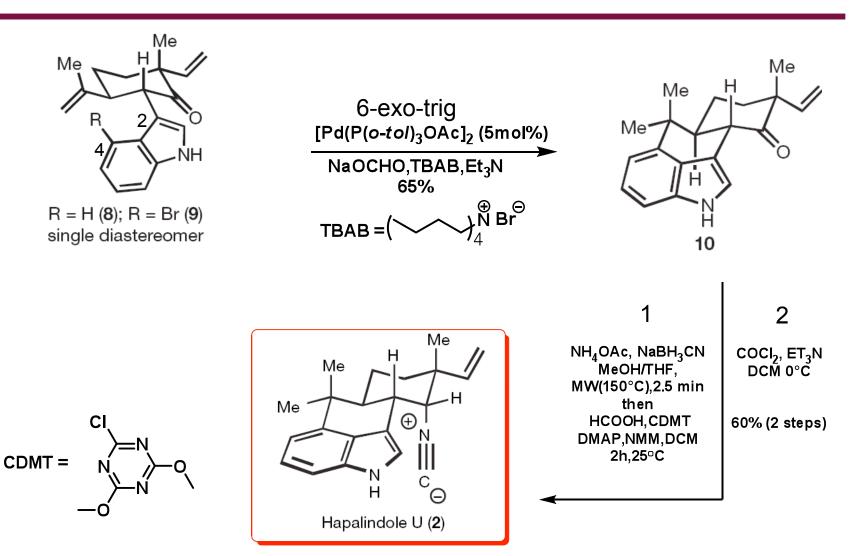
Hapalindole U and Ambiguine H contd....

single diastereomer

Friedal-Crafts annulation failed!!! Cyclization at C-2

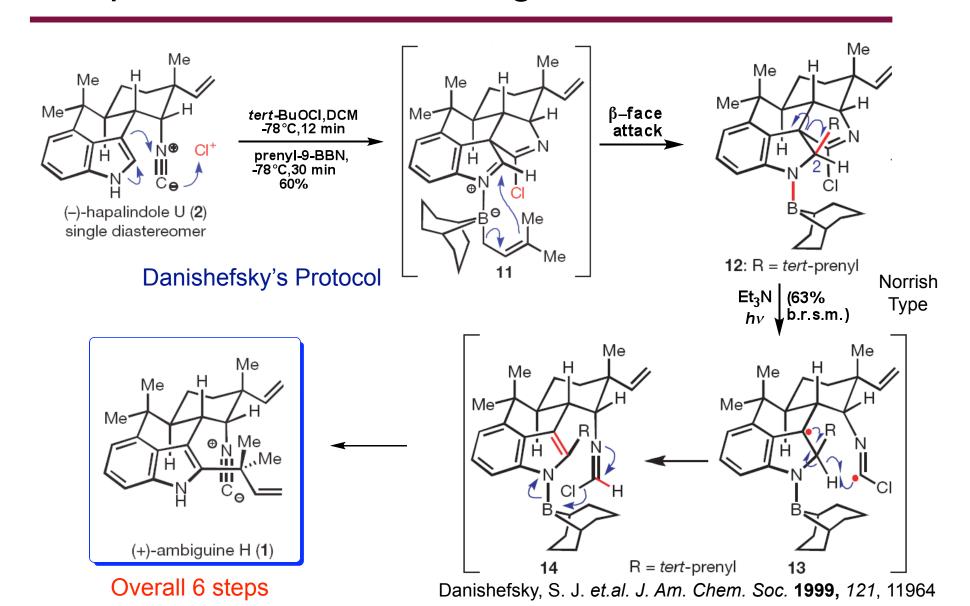
Me

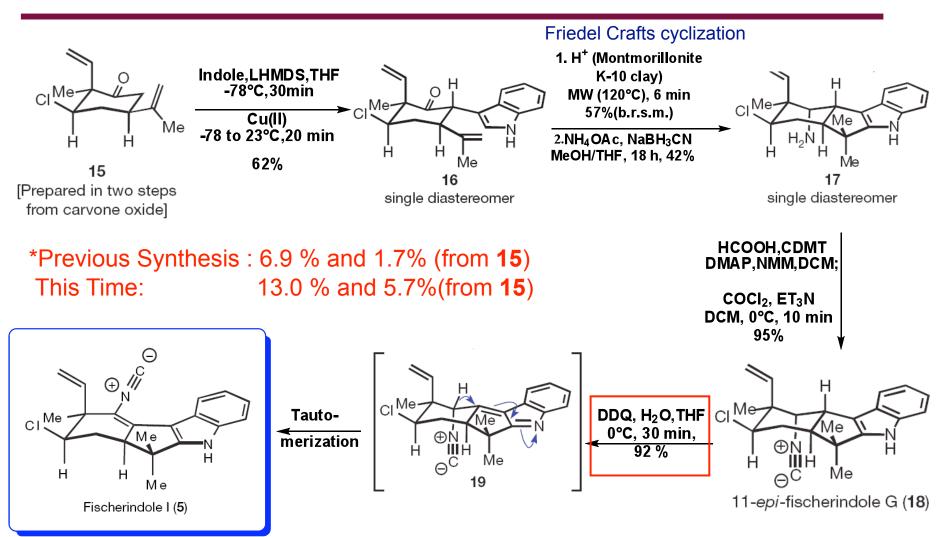
Ме


9 10 mol. % Pd, Et₃N (2.2 equiv), HCO₂Na (1.25 equiv), DMF, 80 °C

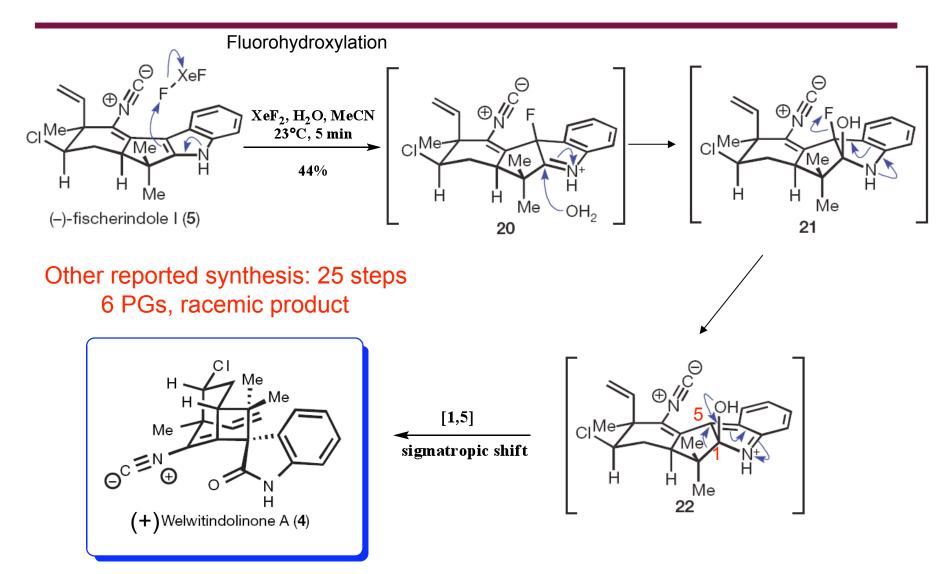
Entry	Pd-source, additives, time	∕ield (%)ª
1	Pd(OAc) ₂ , TBAC (1.0 equiv), Et ₃ N (2.5 equiv), 15 h	18 ^b
2	Pd(OAc) ₂ , Ph ₃ P (0.2 equiv), 15 h	39 ^c
3	Pd ₂ (dba) ₃ , TBAB (2.0 equiv), Et ₃ N (2.2 equiv), 15 h	22
4	Pd(PPh ₃) ₄ , TBAB (2.0 equiv), Et ₃ N (2.2 equiv), 15 h	42
5	Herrmann's catalyst, TBAB (2.0 equiv), 15 h	50
6	Pd(OAc) ₂ , TBAB (2.0 equiv), Et ₃ N (2.2 equiv), added over 5 h	<10 ^d
7	Herrmann's catalyst, TBAB (2.0 equiv), Et ₃ N (2.2 equiv), added over	<i>5</i> h 65 ^d

^a isolated yield after chromatography; ^b conditions from ref. 26; ^c conditions from ref. 25; ^d isolated yield after 5 h (syringe pump) addition complete


Hapalindole U and Ambiguine H contd....


Previous synthesis: racemic, multiple PGs, 20 steps

Hapalindole U and Ambiguine H contd....



Fischerindole I and Welwitindolinone A (Revised)

*Baran, P. S. et.al. J. Am. Chem. Soc. 2005, 127, 15394

Fischerindole I and Welwitindolinone A

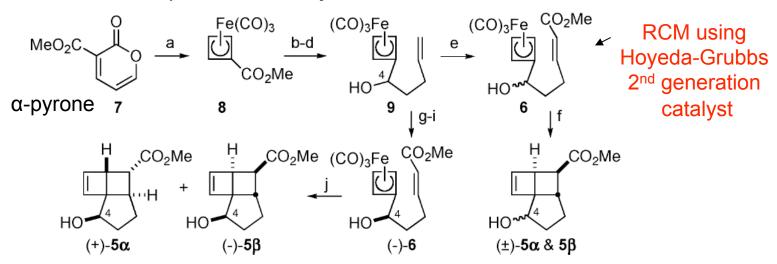
Shellhamer, D. F. et al. J. Chem. Soc. Perkin Trans. II, 1991, 401

Guidelines followed.....

- Redox reactions that do not form C–C bonds should be minimized
- The percentage of C—C bond-forming events within the total number of steps in a synthesis should be maximized
- Disconnections should be made to maximize convergency
- The overall oxidation level of intermediates should linearly escalate during assembly of the molecular framework (except in cases where there is strategic benefit such as an asymmetric reduction)

Guidelines followed.....

- Where possible, cascade (tandem) reactions should be designed and incorporated to elicit maximum structural change per step
- The innate reactivity of functional groups should be exploited so as to reduce the number of (or perhaps even eliminate) protecting groups
- Effort should be spent on the invention of new methodology to facilitate the aforementioned criteria and to uncover new aspects of chemical reactivity
- If the target molecule is of natural origin, biomimetic pathways (either known or proposed) should be incorporated to the extent that they aid the above considerations

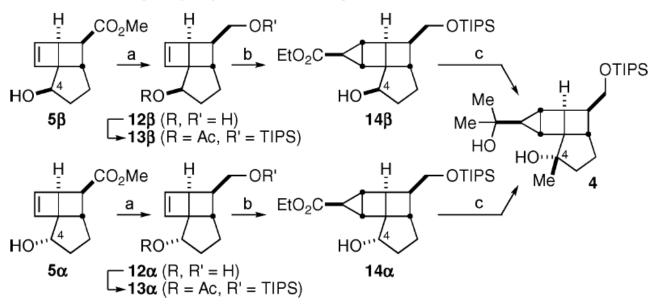


Pleocarpene and Pleocarpenone

Scheme 1. Retrosynthesis of Pleocarpenone and Pleocarpenene

Pleocarpene and Pleocarpenone

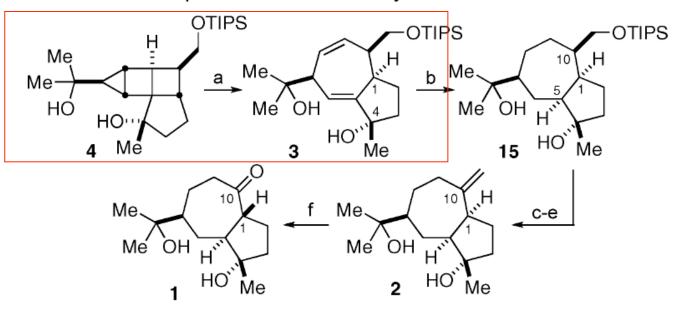
Scheme 2. Preparation of the Cyclobutene 5^a


a Reaction conditions: (a) *hv*, PhH; Fe₂(CO)₉, 64%; (b) DIBAL, Et₂O, 0 °C to rt, 95%; (c) MnO₂, CH₂Cl₂, 4 Å MS, 83%; (d) CH₂=CHCH₂CH₂MgBr, Et₂O, -78 °C, 96%; (e) CH₂=CHCO₂Me (10 equiv), Grubbs' second cat. (**10**) (2.5 mol %), 60 °C, (94%, 13:1 *E:Z*); (f) CAN, acetone, (91%, 3.3:1 β:α); (g) MnO₂, CH₂Cl₂, 4 Å MS (90%); (h) catechol borane, (3aS)-tetrahydro-1-methyl-3,3,-diphenyl-1*H*,3*H*-pyrrolo[1,2-*c*][1,3,2]oxazaborole (**11**) (15 mol %), toluene, -78 °C (96%, 92% ee); (i) CH₂=CHCO₂Me (10 equiv), **10** (2.5 mol %), 60 °C, (94%, 13:1 *E:Z*); (j) CAN, acetone; separation on 10 wt % AgNO₃ on silica gel (80%, 2.7:1 β:α).

Snapper et.al. JACS, **2007**, *129*, 486

Pleocarpene and Pleocarpenone

Scheme 3. Cyclopropanation of Cyclobutene **5**^a



^a Data shown for one enantiomeric series. Reaction conditions: (a) (i) LAH, THF, 0 °C to rt; (ii) TIPSCl, DMAP, Et₃N, THF, 4 Å MS; Ac₂O (87−89%); (b) EDA, Cu(acac)₂ (5 mol %), CH₂Cl₂, reflux; EtOH, rt; then NaOEt_(s) (93−95%); (c) (COCl)₂, DMSO, THF, −62 °C; Et₃N, rt; MeMgCl, −78 °C (79−82%).

Pleocarpene and Pleocarpenone

Scheme 4. Completion of the Total Synthesis^a

^a Reaction conditions: (a) benzene, 200 °C, DBU (15 mol %) (76%); (b) W.R. Grace 2800 RaNi, H₂ (100 atm), acetone, 63%; (c) TBAF, THF, 99%; (d) TsCl, Et₃N, DMAP, THF, CH₂Cl₂, 99%; (e) NaI, DBU, DMF, 80 °C, 83%; (f) O₃, MeOH, −78 °C; DMS, rt; NaOMe (85%).

Mother Nature still provides significant synthetic challenges

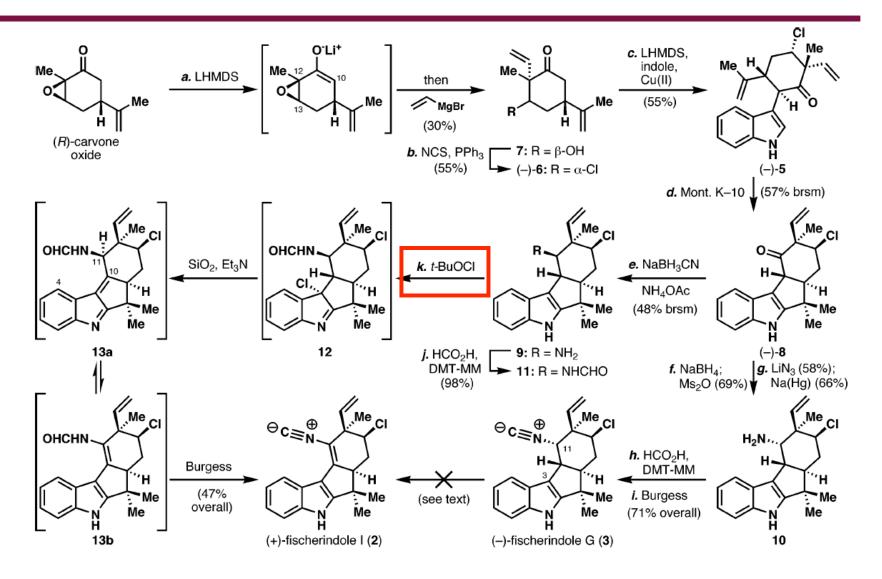
М

The Total Synthesis of (±)Barbatusol

Tetrahedron Letters 1993, 34,445

Danishefsky's protocol of prenylation

Scheme 7

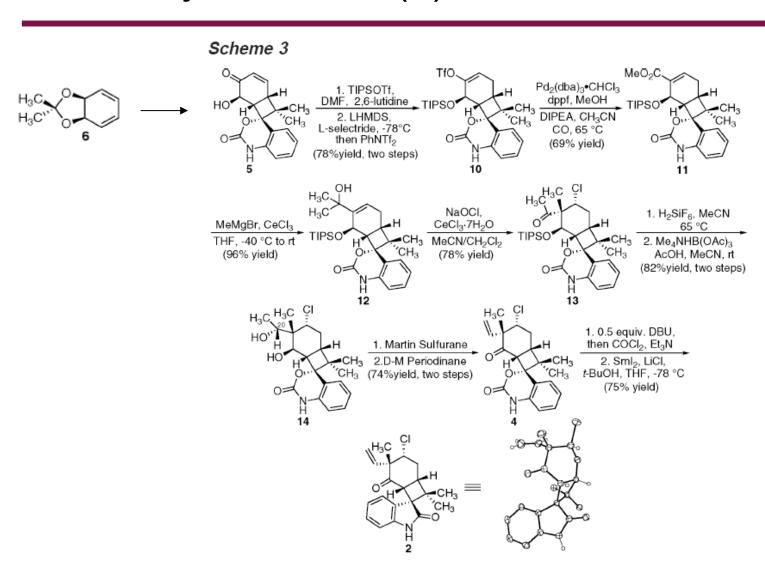

Danishefsky, S. J. et.al. J. Am. Chem. Soc. 1999, 121, 11964

Preparation of 15

Ŋ

Fischerindole I and Welwitindolinone A (Previous)

Baran, P. S. et.al. J. Am. Chem. Soc. 2005, 127, 15394


Burgess Reagent

$$CI = \overset{\circ}{S} - N = C = O \xrightarrow{C_6H_6, 25 - 30^{\circ}C} CI = \overset{\circ}{S} - NH \longrightarrow OCH_3$$

$$CI = \overset{\circ}{S} - NH \longrightarrow OCH_3 \xrightarrow{C_6H_6, 10 - 15^{\circ}C} OCH_3 \longrightarrow OCH_3 + (C_2H_5)_3N + CI \longrightarrow OCH_3 + (C_2H_5)_3N + (C_2H_5)$$

Baran, P. S. et.al. J. Am. Chem. Soc. 2005, 127, 15394

Total Synthesis of (±) Welwitindolinone A

Reisman, S. E. et.al. J. Am. Chem. Soc. 2006, 128, 1448

Total Synthesis of (±) Welwitindolinone A

Reisman, S. E. et.al. J. Am. Chem. Soc. 2006, 128, 1448